

TED University

CMPE 491

Virtuanance

Low-Level Design Report

Members

Hakan Ahmet Tekin, Cem Tırpanlı, Ali Can Keskin, Doğukan Terzi

Supervisor

Tolga Kurtuluş Çapın

Jury Members

Aslı Gençtav, Venera Adanova

Table of Contents

1. Introduction 4

1.1. Object Design Trade-offs 4

1.1.1. Functionality vs Usability 4

1.1.2. Complexity vs Cost 5

1.1.3. Performance vs Security 5

1.2. Interface Documentation Guidelines 5

1.3. Engineering Standards 6

1.4. Definitions, Acronyms and Abbreviations 6

2. Packages 7

2.1. Unity 8

2.1.1. Client Subsystem 8

2.1.1.1. Tracking & Recognition 8

2.1.1.1.1. Object Tracking & Recognition 9

2.1.1.1.2. Hand Tracking & Recognition 9

2.1.1.2. Interaction 9

2.1.1.2.1. Interactions with Leap 9

2.1.1.2.2. Interactions with KBM 9

2.1.1.3. UI 10

2.1.1.3.1. Menu Interfaces 10

2.1.1.3.2. Connection 10

2.1.1.3.3. File Importer 10

2.1.1.4. Connection 10

2.2. Server Subsystem 10

2.2.1. Data 11

2.3. HMD 11

3. Class Interfaces 11

3.1. UI 11

3.2. Tracking & Recognition 14

3.2.1. Object Tracking & Recognition 14

3.2.2. Hand Tracking & Recognition 14

3.3. Interaction 17

3.3.1. Interactions with KBM 17

3.4. Connection 18

3.5. Server Subsystem 20

3.5.1. Data 20

4. Sequence Diagrams 21

4.1. Scenario #1 21

4.2. Scenario #2 21

4.3. Scenario #3 (From expert view) 22

5. Glossary 23

6. References 24

1. Introduction

Remote Maintenance is a set of information technology tools that monitors all activity at each

workstation and provides information to the professional who is helping the technician.

Remote Maintenance typically takes the form of a single interface that provides complete

visibility into a client's desktop, AR/VR glasses, and even phones or tablets to maintain

hardware components of a machine that is not working. Remote maintenance technology can

most of the time tell the difference between critical and non-critical problems and react

accordingly. Much of this is undertaken to prevent significant machine failures and provide

peace of mind to the organization. [1]

In the project, a Mixed Reality Environment is created and maintained by attaching an external

camera to VR glasses, and it is aimed to be user-oriented and user-friendly. Besides, the

application is requested not only to maintain a specific object but also to repair any object

anywhere. In this way, since this project is not made to maintain a specific product, it can help

anyone who wants to maintain an object remotely.

Novelty, and the challenging part is to be able to place a virtual 3D model on an accurate 3D

model in the project, and some hand movements on this model are to make a system that

shows where the object is to be rotated, or where the place to be maintained. The solution

will be reached by showing hand movements with Leap Motion Controller and maintaining

tools by creating UI with hand gestures when using Leap Motion Controller.

The rest of this section delves into our decisions about the project's ultimate goals and the

concepts we used to document and improve it. The sections that follow define the software's

overall architecture and components.

1.1. Object Design Trade-offs

1.1.1. Functionality vs Usability

There are two different UI designs in the project application named technician

perspective and professional perspective.

For Technician UI, as a simple principle, a UI design can be made and the functionality

can only be provided with their own hands (Leap Motion Controller) At the same time,

it is ensured that the hand movements are seen by the professional, and the

professional is provided to tell the instructions to the technician in the best way. This

increases usability for the technician.

For Professional UI, it is more difficult than the technician’s UI. To give the Technician

the necessary instructions and get a better 3D view of the object, the professional's UI

functionality is higher than the UI design of the technician.

1.1.2. Complexity vs Cost

Expenditures made in a project may be to make that project user-friendly. For our

project, it is aimed that those who use the application maintain an object in the

simplest ways. Therefore, several technologies are included in the project to use an

application with less complexity, such as Leap Motion Controller and Zed Mini

external VR Camera.

The versions in which these technologies are not used will also be offered to the

clients within the versions. However, in this case, users may have difficulty using the

program and may not even fully understand the parts they will maintain.

1.1.3. Performance vs Security

In defense industry projects, security has priority over other requirements. In order

for defence industries to integrate technicians and professionals into their systems,

P2P connections or their own server implementations are required. In the provision

of these network connections, the people who make the project cannot know the

types of the users' servers and some performance losses may be experienced.

However, the loss of performance can be ignored, as the project team must do it in

a way that can scale the network security.

1.2. Interface Documentation Guidelines

In this document, classes are documented with the following components:

1. Package Name: Name of the package the class belongs to.

2. Class Name: Name of the class.

3. Description: Summary of the purpose of the class.

4. Attributes: Public (“+”) and private (“-”) attributes of the class with their types.

5. Methods: Public (“+”), protected (“#”) and private (“-”) methods of the class with their

signatures.

As evident from above, the guidelines follow the UML principles [2].

1.3. Engineering Standards

In this document there are two principles adopted. The first of these is the use of UML

notation in our diagrams. The second one is the use of IEEE citation guidelines for our

referencing and citations [3]

1.4. Definitions, Acronyms and Abbreviations

KBM

Keyboard and Mouse: It is an abbreviation indicating the use of Keyboard
and Mouse.

MR

Mixed Reality: It is the merging of real and virtual worlds to produce new
environments and visualizations.

AR

Augmented Reality: It is an interactive experience of a real-world
environment.

VR

Virtual Reality: It is a simulated experience that can be similar to or
completely different from the real world.

3D

3 Dimension: Representing a model with his width, height and depth.

UI

User Interface: The interface that user interacts with while using our
application.

IEEE

The Institute of Electrical and Electronics Engineers: The engineering and
reporting standards used.

UML

Unified Modelling Language: This is the standard diagramming and
modeling technique.

2. Packages

Our project can be divided into two packages: Client Layer and Server Layer. Client Layer

contains functionalities that handles both visible and background operations for both

technician’s and expert's view and experiences. Server Layer is handling all things related

between two clients including voice and visual communication and data and object sharing.

In the project different libraries and tools are fused together to produce a helpful and widely

applicable solution. This makes it difficult to understand the internal structure of the

application and its utilities. This separation will make understanding the application easier.

We will explain these packages in more detail in the following sections.

2.1. Unity
The Unity package covers the entire client side of Virtuanance as it was written using Unity

libraries and plug-ins. The connection subsystem uses the 'Agora’ plug-in for communication

between expert and technician and Tracking & Recognition subsystem uses ‘Vuforia’. HMD’s are

connected via Valve’s ‘SteamVR’ plug-in. Most of Virtuanance code takes advantage of Unity’s

component design pattern to add functionality to objects.

2.1.1. Client Subsystem

Client Layer includes sub-packages that have utilized different libraries in order to

provide better experiences for both the technician and the expert. The functionalities

and the codes that integrate, utilize, and enhance the libraries in the project that is

useful for either the technician or the expert are in these packages. Augmentation of the

reality, technician’s interaction with augmented objects and world, expert’s interaction

and annotations on the shared model are examples of the functionalities that is handled

in the Client Layer.

2.1.1.1. Tracking & Recognition

This package contains two sub-packages and handles locating and tracking of the

real-world objects and elements that will be modeled for the users, namely

technician and expert. Both technician and expert will use those tracked models for

understanding both the problem and the solution processes together.

2.1.1.1.1. Object Tracking & Recognition

In this package object tracking and recognition is handled with the help of

Vuforia library. When technician launches the main screen, the marker that the

user uploaded to the system will be found and tracked while it is inside the field

of view of the technician. After that, a copy of the model that the user uploaded

will be created on the object so that the technician can investigate further or

interact and annotate on the object in order to enhance the communication and

understanding between him/her and the expert.

2.1.1.1.2. Hand Tracking & Recognition
Hand Tracking layer is responsible from Leap Motion input. The movement of

hands and their translation into the digital space is handled. Custom gestures

such as pinch or grasp are also detected in this layer and appropriate responses

are created. When a hand tries to interact with world objects, this layer notifies

the interaction layer.

2.1.1.2. Interaction
The interaction package is one of the most important packages for the ease of use

and efficient work targeted by the project. The contents of this package will enable

both users to interact with models in many various ways such as rotating, scaling etc.

2.1.1.2.1. Interactions with Leap
Leap Motion Controller translates a user’s hand into the digital world of

Virtuanance. This layer allows users to touch and control any interactable object

within the world (buttons, meshes etc.). This layer provides roughly the same

functionalities that are mentioned in 2.1.2.2, but instead of getting input from

keyboard/mouse, Leap Motion is used to detect a hands location and its gestures

for simulating input.

2.1.1.2.2. Interactions with KBM
This package provides utilities for experts. Expert will have a copy of the object’s

model so that he can inspect the model clearly and freely while guiding the

technician. This package provides functionalities such as scaling, rotating the

object as well as moving and rotating the camera that allows expert to see the

copy of the model.

2.1.1.3. UI

2.1.1.3.1. Menu Interfaces
This is the entry point of Virtuanance. Each user is presented with a menu to show

them options to choose. This layer connects the entire project and directs the user

to different components of the project. The UI is designed to work on different

screen scales and built with design principles in mind.

2.1.1.3.2. Connection
This is the connection point of Virtuanance. Technician users are given a client ID,

which then can be used by the expert user to establish a connection. The UI is

designed to be simple, understandable by all the users.

2.1.1.3.3. File Importer
This is where the users can interact with their hard drives and use it to import files

to the system. This layer handles all the local storage operations. UI of this layer

consists of two scenes, in which one consists of handling the file chooser menu,

and the other is helping users to browse their local imported files.

2.1.1.4. Connection
This package handles the connection between expert and technician. Classes

inside these packages are responsible for synchronization of models, audio

communication between clients and sharing technician’s views with the expert.

2.2. Server Subsystem

This package contains data of the model uploaded to the system and communication

data between two clients.

2.2.1. Data
This package contains information about the virtual models that are going to be

displayed on both clients’ views, the audio of the clients and visuals that will be

shared between both clients.

2.3. HMD

The HMD package directly connects the user (technician side) to the application

and it should be able to support various VR glass brands(we used "HTC Vive"

while we were doing the project.). In order for HMD data to interact with Unity,

a plugin named "SteamVR" will be used. In this way, the application can be used

not only for HTC Vive but also with many different VR glasses. The data

subsystem is responsible for displaying the digital world of Virtuanance to the

user from their perspective. Camera movements are handled in this package.

3. Class Interfaces

3.1. UI

Class – MenuManager

Responsible for handling the menu interactions.

Attributes

-PreviouslySelected: GameObject

+OpenPanelAnimator: Animator

Methods

 +OpenPanel(Animator): void Opens a panel

 -CloseCurrent(void): void Closes whatever panel was open and selects the previous

selected

-SetSelected(gameObject): void Selects the pressed object’s panel and makes it the opened one

+OnButtonPressed(Button):void Events for pressed buttons

Class - RuntimeImageTarget

Class is called on main screen initialization to load markers and corresponding objects from local

storage.

Attributes

-scriptEnabled: boolean

Methods

+loadTargets(): void Provides a loop for loading targets from storage

-GetRealSize(parent: GameObject):

Bounds

Calculates the size of the gameObject, which is currently

loading (size = x,y and z size of object)

-CreateImageTarget(): void Creating the markers and the objects and giving them

appropriate vuforia behaviours

Class - ImportedFileManager

The class responsible for creating the screen for viewing the previously imported files.

Attributes

 +upload, preview, delete: Sprite

+buttonPrefab, panelToAttachButtonsTo: gameObject

Methods

+Start() : void While initialization, this function creates all the screen by

creating the gameObjects using logs.txt file located in the

assets folder.

+deleteClickListener(b:

gameObject): void

Basic listener to handle all the clicks on the delete button.

+updateClickListener(b:

GameObject, typeOfFile: string):

void

Basic listener to handle all the clicks on the update button.

-ShowLoadDialogCoroutine(

typeOfFile: string, j: int):

IEnumerator

Called by update function, to create new file browsers while

updating the markers and objects.

+startPreview(b: GameObject): void Basic listener to handle all the clicks on the preview button.

Class - FileChooser

This class is used for creating file chooser subscreens when “Upload” button is clicked in the

“Upload Files” scene.

Attributes

+uploadButton: Button

+markerLocation, objectLocation: String

Methods

+clickSelect(): void Basic listener to handle all the clicks on the select button.

-ShowLoadDialogCoroutine(

typeOfFile: string): IEnumerator

Called by clickSelect function, to create new file browsers

while uploading the markers and objects.

+clickUpload(): void Basic listener to handle all the clicks on the upload button.

-checkDirectories(toCheck: String) Used to check if the directory exists, before uploading the

file on that directory.

3.2. Tracking & Recognition

3.2.1. Object Tracking & Recognition

Class - VuforiaBehaviour

This class is the main class of the tracking algorithm that we will use in the project. Using this Class,

you can determine the location of objects in the real world.

Attributes

#Path : String

+StorageType: Enum

Methods

+Load(string path, StorageType st):

bool

Loads images and makes them Trackable for the Vuforia

Engine

#CreateTracakable(TrackableSource

trackableSource, String

gameObjectName):

DataSetTrackableBehaviour

Creates a new trackable behavior attached to a new

GameObject with the given name and adds it to this dataset

3.2.2. Hand Tracking & Recognition

Class – Settings Sub Menu

This class is the controlling hand menu that will appear next to the hands when the required hand

signal is made.

Attributes

 -hand: InteractionHand

 +MenuPrefab: GameObject

Methods

 +ToggleMenu(bool): void Opens or closes the hand menu

 -CheckHandPosition(InteractionHand) Check if hand is in correct position for opening the menu

Class - InteractionButton

It is a class that allows hands in the Leap Motion Controller to detect and touch 3-dimensional

buttons by following the hand.

Attributes

-isPressed : bool

Methods

 +OnPress(void) Triggered event when a button is ‘pressed’ (collided with an

interaction hand object)

 +OnDepress(void) Triggered event when a button is ‘unpressed’ (exited collision

with an interaction hand object)

Class – Interaction Hand

Enables interaction with objects that are using the interaction engine of LeapMotion SDK. The class

has access to the data output of LeapMotion controller device.

Attributes

-leapProvider: LeapProvider

-handData: Hand

-isTracked: bool

-contactBones: ContactBone[]

Methods

-initContact(void): void Handles contact bones and other required data when a contact begins

-getGraspPoint(void):

Vector3

 Returns the point of contact of a grasped object

Class - HandPointer

Enables the utility feature ‘hand pointer’. With it, the user can select objects that are far away

from leap hands. Renders a thin red line resembling a laser pointer.

Attributes

-attachedAttachmentHand: AttachmentHand

-handModel: HandModel

-line: LineRenderer

Methods

 +ActivateLineTrace(): void Activates/Deactivates the pointer

-CalculateLinePositionAndRotation()

: void

Calculates the transform of the pointer line relative to the

hand it is attached to.

+ClickAction: Action Action event used when a predefined gesture is done by the

user (e.g. pressing two fingertips)

3.3. Interaction

3.3.1. Interactions with KBM

Class - Camera Movement

Expert can control the camera which shows him/her the model of the object next to the

technician’s view on the expert's screen.

Attributes

+mainSpeed: float

+shiftAdd: float

+maxShift: float

+degrees: float

+angularSpeed: float

#targetCam: Camera

Methods

#GetBaseInput(): Vector3 Returns basic directions for camera to move

#RotateCamera() : void Rotates Camera according to the mouse movement when

right mouse button is down

#PivotObject Checks whether the mouse is on the object when the right

button is first clicked. If it is then uses it as a pivot for

camera movement.

Class - ObjectManipulator

Enables expert to manipulate the model of the object so that he/she can explain/guide the

technician better.

Attributes

+rotSpeed: float

Methods

#OnMouseDown(): void Calls GetMouseAsWorldPoint() so that that information can

be used when manipulating the object. When the wheel is

rotated, it scales the object according to the input.

 #OnMouseDrag(): void Rotates the object according to mouse drag when left

mouse button is down.

#GetMouseAsWorldPoint(): Vector3 When mouse is clicked gets mouse’s location on virtual

world so that it can be used when scaling, rotating and

moving the object.

3.4. Connection

Class - ExpertConnectHandler

This class is used for handling all the connection interactions on an expert's client.

Attributes

 #AppID: string

Methods

+Start(): void During the initialization, creates the input field.

-CheckAppId(): void Checks if the current app ID is valid.

-LoadLastChannel(): void Gets the channel name from the input field.

+HandleSceneButtonClick(): void After the click on the connect button, moves to the main

scene where expert can observe the technicians

interactions with the world.

Class - TechnicianConnectHandler

This class is used for handling all the connection interactions on expert’s client.

Attributes

#AppID: String

Methods

-CheckAppId() : void Checks if the current app ID is valid.

+HandleSceneButtonClick(): void After the click on the connect button, moves to the main

scene where technician can interact with the world.

Class - SendToServer

Method is called whenever the technician interacts with an object, to send the corresponding

object’s data to the server.

Attributes

-hostName: string

Methods

+sendObjectToWebService(g:

GameObject) : void

After the technician touches an object, its data is

transferred to the live web service with POST request.

Class - RetrieveFromServer

Method is called whenever the expert clicks “Sync” button, to retrieve any object data current on

the server.

Attributes

-hostName: string

Methods

+retrieveObject(): void Calls the getGameObject, and spawns the returned object

from the server.

-getGameObject(): GameObject Client sends a GET request to the web service and gets a

byte array of the object in the server, then returns in to the

caller function.

3.5. Server Subsystem

3.5.1. Data

Data - Model

Description

Model data is the byte array, consisting of the data of the object interacted by the technician,

which is then transferred to a web service with POST request (Sending a POST request to

www.virtuanance.com/uploadFile with the byte array on body). Then the data can be obtained by

sending a GET request with the current channel name. (Sending a GET request to

www.virtuanance.com/downloadFile/fgalws)

Data - Audio

Description

Audio data is transferred between the users in the same channel. Audio operations are carried by

the library “Agora”.

http://www.virtuanance.com/uploadFile

Data - Video

Description

Technicians screen is live broadcasted to the expert in the same channel. All the screen data is

transferred, the augmented environment is included. The video broadcasting is handled by the

library “Agora”.

4. Sequence Diagrams

4.1. Scenario #1

The technician and the expert launch the application. They connect to the same room.

System establishes their connection. The technician interacts with the environment.

Interacted data is sent to the professional. The expert analyses the data, and gives the

required feedback by creating animations, or by guiding the technician verbally. After the

feedback loop is completed, both users terminate their client applications.

4.2. Scenario #2

The technician launches the application. Expert is not available to connect right away. The

technician starts interacting with the environment. When they select a model, they rotate it,

move it, or rescale it in their visual screen, but not in the real environment. They use the

program in offline mode to observe the object without interacting with them in real life.

4.3. Scenario #3 (From expert view)

Expert is presented with an object technician has just interacted with. Then, after analyzing

the object, expert creates feedback with the UI, and the feedback is transferred back to the

technician to aid them.

5. Glossary

AR: (Augmented Reality) It is an interactive experience of a real-world environment where

the objects in the real world are enhanced by computer-generated perceptual information,

sometimes across multiple sensory modalities, including visual, auditory, haptic,

somatosensory, and olfactory.

HMD: It is a display device, worn on the head or as part of a helmet (See Helmet-mounted

display for aviation applications), that has a small display optic in front of one (monocular

HMD) or each eye (binocular HMD).

HTC Vive: The brand of VR glasses that we use for this project.

Leap Motion Controller: it is an optical hand tracking module that captures the movements

of your hands with unparalleled accuracy.

Vuforia: It is an augmented reality software development kit for mobile devices that enables

augmented reality applications. It uses computer vision technology to recognize and track

planar images and 3D objects in real-time.

VR: (Virtual Reality) It is a simulated experience similar to or completely different from the

real world. Applications of virtual reality can include entertainment (i.e. video games) and

educational purposes (i.e. medical or military training).

6. References

[1]- “What is Remote Monitoring and Maintenance (RMM)?,” CGS, 16-Sep-2018. [Online].
Available: https://www.cgsinc.com/en/resources/what-remote-monitor-and-maintenance-
rmm. [Accessed: 14-Mar-2021].

[2]- Modeling Style Guidelines. [Online]. Available: http://agilemodeling.com/style/.
[Accessed: 14-Mar-2021].

[3] - Ieeeauthorcenter.ieee.org. 2021. [online] Available at:

<https://ieeeauthorcenter.ieee.org/wp-content/uploads/IEEE-Reference-Guide.pdf>

[Accessed 14 March 2021].

	1. Introduction
	1.1. Object Design Trade-offs
	1.1.1. Functionality vs Usability
	1.1.2. Complexity vs Cost
	1.1.3. Performance vs Security
	1.2. Interface Documentation Guidelines
	1.3. Engineering Standards
	1.4. Definitions, Acronyms and Abbreviations

	2. Packages
	2.1. Unity
	2.1.1. Client Subsystem
	2.1.1.1. Tracking & Recognition
	2.1.1.1.1. Object Tracking & Recognition
	2.1.1.1.2. Hand Tracking & Recognition
	2.1.1.2. Interaction
	2.1.1.2.1. Interactions with Leap
	2.1.1.2.2. Interactions with KBM
	2.1.1.3. UI
	2.1.1.3.1. Menu Interfaces
	2.1.1.3.2. Connection
	2.1.1.3.3. File Importer
	2.1.1.4. Connection
	2.2. Server Subsystem
	2.2.1. Data
	2.3. HMD

	3. Class Interfaces
	3.1. UI
	3.2. Tracking & Recognition
	3.2.1. Object Tracking & Recognition
	3.2.2. Hand Tracking & Recognition
	3.3. Interaction
	3.3.1. Interactions with KBM
	3.4. Connection
	3.5. Server Subsystem
	3.5.1. Data

	4. Sequence Diagrams
	4.1. Scenario #1
	4.2. Scenario #2
	4.3. Scenario #3 (From expert view)

	5. Glossary
	6. References

